A lot of classification algorithms are available in the area of data mining for solving the same kind of problem with a little guidance for recommending the most appropriate algorithm to use which gives best results for the dataset at hand. As a way of optimizing the chances of recommending the most appropriate classification algorithm for a dataset, this paper focuses on the different factors considered by data miners and researchers in different studies when selecting the classification algorithms that will yield desired knowledge for the dataset at hand. The paper divided the factors affecting classification algorithms recommendation into business and technical factors. The technical factors proposed are measurable and can be exploited by recommendation software tools.
KEYWORDS
Classification, Algorithm selection, Factors, Meta-learning, Landmarking
0 Comments